Affymetrix GeneChips
Oligonucleotide Microarrays

Many commercial microarray platforms are available:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Array Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix</td>
<td>Oligo arrays</td>
</tr>
<tr>
<td>Qiagen</td>
<td>Oligo arrays</td>
</tr>
<tr>
<td>Amersham Biosciences</td>
<td>Oligo arrays</td>
</tr>
<tr>
<td>MWG Biotech</td>
<td>Oligo arrays</td>
</tr>
<tr>
<td>Rosetta (Merck)</td>
<td>Oligo arrays</td>
</tr>
<tr>
<td>Agilent</td>
<td>Oligo arrays and Oligo arrays</td>
</tr>
<tr>
<td>Clontech, BD Biosciences</td>
<td>cDNA arrays</td>
</tr>
<tr>
<td>UHN MAC (Ontario)</td>
<td>cDNA arrays</td>
</tr>
<tr>
<td>Incyte Gene Album</td>
<td>cDNA arrays</td>
</tr>
<tr>
<td>Genomictree, Inc</td>
<td>cDNA arrays</td>
</tr>
</tbody>
</table>

Plus a variety of custom cDNA arrays
Examples of publicly available

gene expression data repositories

1. **ArrayExpress** - A public repository for microarray based gene expression data maintained by European Bioinformatics Institute.
2. **ChipDB** - A searchable database of gene expression.
3. **Gene Expression Atlas** - A database for gene expression profile from 91 normal human and mouse samples across a diverse array of tissues, organs, and cell lines.
4. **Gene Expression Database (GXD)** - A database of Mouse Genome Informatics at the Jackson laboratory.
5. **Gene Expression Omnibus** - A database in NCBI for supporting the public use and disseminating of gene expression data.
6. **MUSC DNA Microarray Database** - MUSC DNA Microarray Database is a web-accessible archive of DNA microarray data.
7. **NASCArrays** - a repository for Affymetrix data generated by NASC's transcriptomics service.
A Quantitative Overview to Gene Expression Profiling in Animal Genetics

Affymetrix Chips

Procedures for Target Preparation

1. Wash & Stain
2. Scan
3. Hybridise
4. (16 hours)

- IVT (Biotin-UTP, Biotin-CTP)
- Fragment (heat, Mg++)
- Fragmented cRNA
- Biotin-labeled transcripts

RNA → cDNA → B → B → B → B

0.18 cm
1.28 cm

Actual size of GeneChip® array

600,000 locations on each GeneChip® array

Actual strand = 28 base pairs

Armidale Animal Breeding Summer Course, UNE, Feb. 2006
Probe → A 25mer oligo complementary to a sequence of interest, attached to a glass surface on the probe array.

Perfect Match (PM) → Probes that are complementary to the sequence of interest.

Mismatch (MM) → Probes that are complementary to the sequence of interest except for homomeric base change (A-T or G-C) at the 13th position.

Probe Pair → A combination of a PM and a MM.

Probe Set → A set of 11 – 20 probe pairs.
Terminology

Gene Sequence:
Probe Sequences:

Probe set: 11 to 20 probe pairs (PM & MM) to interrogate each gene
There may be 5,000-20,000 probe sets per chip

Figure 1-3: Expression tiling strategy
Pros and Cons of Affymetrix

Advantages:
- Conditions are precisely controlled, chips are identical and can be compared
- Only unique part of sequence is chosen – detection of closely related genes or splice variants is possible

Disadvantages:
- The sequences are chosen based on a contemporary UniGene release and might get revised
- Short probes may result in less specific hybridization and reduced sensitivity
 (Agilent prefers 50-100mers)
- Expensive!!! We often have to resort to cDNA arrays

Bridging Platforms

"The overall correlations between platforms were in the range 0.7 to 0.8. When concordance was measured for expression ratios significant at P < 0.05, the agreement among the platforms was very high, ranging from 93% to 100%"

Many other references comparing platforms with mixed results:
Pessimistic at the beginning (ie. 2000’s), more optimistic later on (…as the analysis methods to compare were more sophisticated).

A Quantitative Overview to Gene Expression Profiling in Animal Genetics

Affymetrix Chips

Ferl et al. (2003)

27 DE in cDNA
Of which 14 were present in the Affy chip.

R = (PM-MM)/(PM+MM) **Discrimination Score of a Probe Pair.**

Discrimination score R describes the ability of a probe pair to detect its intended target.
If R is close to 1.0 in a majority of pairs in a set, the detection p-value will be lower

Discrimination Score of each probe pair is compared to \(\tau \) - user defined value (default =0.0015)

If \((PM-MM)/(PM+MM) > \tau \), then probe set is excluded

Increasing \(t \) can reduce the number of false positives, but the true present calls might be lost.
Converting the signal intensity into numeric values

R = Discrimination Score

\[R = \frac{(PM-MM)}{(PM+MM)} \]

Discrimination score of each probe pair is compared to \(t \) (default = 0.0015)

A one-sided Wilcoxon's Signed Rank test is the statistical method used to calculate the **Detection P-value** that reflects the significance of the differences between PM and MM. It assigns each probe pair a rank based on how far the probe pair Discrimination Score is from \(\tau \)

P-value or statistical significance of a result is the probability that the observed change in a sample occurred by pure chance.

\[\alpha_1 \text{ and } \alpha_2 \text{ are user defined values but have optimized defaults in the software} \]

<table>
<thead>
<tr>
<th>P-value of a probe set</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Marginal</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Absent</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Armidale Animal Breeding Summer Course, UNE, Feb. 2006
Converting the signal intensity into numeric values

- Each probe pair in a probe set is considered as having a potential vote in determining the Signal value.
- The real signal is estimated by taking the log of the Perfect Match intensity after subtracting the slide signal estimate (CT: Background correction across the entire array).
- Subsequently, an expression call flag is assigned to each probe set:

 - **P** \(\Rightarrow\) gene is expressed (Present)
 - **M** \(\Rightarrow\) gene is Marginally expressed
 - **A** \(\Rightarrow\) gene is not expressed (Absent)

Conclusions

- Affymetrix arrays can give absolute expression values for a given gene. The software generates a call: **Present, Marginal or Absent** as well as a numeric value for expression level.
- There is a number of "user defined" values used in calculations that we should be aware of while extracting the data.
- Default software values guarantee very stringent cut-offs. The stringency of call generation can be manually changed to include more genes.
Possible Problems

What if

• a small number of the probe pairs hybridize much better than the rest?
• removing the middle base does not make a difference for some probes?
• some MM are PM for some other gene?
• there is need for normalization?
A Quantitative Overview to Gene Expression Profiling in Animal Genetics

Affymetrix Chips

Example

Data for a Single Chip

Probe ID Intens. Flag P-Value

<table>
<thead>
<tr>
<th>Probe ID</th>
<th>Intens.</th>
<th>Flag</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>24,128</td>
<td>252.2</td>
<td>P</td>
<td>0.000072</td>
</tr>
<tr>
<td>551.1</td>
<td>57.8</td>
<td>A</td>
<td>0.040604</td>
</tr>
<tr>
<td>6335.1</td>
<td>591.3</td>
<td>P</td>
<td>0.000593</td>
</tr>
<tr>
<td>7355.1</td>
<td>550.0</td>
<td>P</td>
<td>0.000752</td>
</tr>
<tr>
<td>12377.1</td>
<td>822.0</td>
<td>P</td>
<td>0.000054</td>
</tr>
<tr>
<td>20693.1</td>
<td>229.0</td>
<td>P</td>
<td>0.000004</td>
</tr>
<tr>
<td>8247.4</td>
<td>220.1</td>
<td>P</td>
<td>0.037950</td>
</tr>
<tr>
<td>23024.1</td>
<td>179.4</td>
<td>M</td>
<td>0.000412</td>
</tr>
<tr>
<td>11379.1</td>
<td>11917.7</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>1751.8</td>
<td>1294.0</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>6809.1</td>
<td>1099.0</td>
<td>P</td>
<td>0.000024</td>
</tr>
<tr>
<td>6705.1</td>
<td>1099.0</td>
<td>P</td>
<td>0.000024</td>
</tr>
<tr>
<td>4475.1</td>
<td>339.7</td>
<td>P</td>
<td>0.000025</td>
</tr>
<tr>
<td>2570.1</td>
<td>1669.1</td>
<td>P</td>
<td>0.000025</td>
</tr>
<tr>
<td>5511.1</td>
<td>500.8</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>7002.1</td>
<td>376.0</td>
<td>A</td>
<td>0.037042</td>
</tr>
<tr>
<td>9344.1</td>
<td>593.7</td>
<td>P</td>
<td>0.000053</td>
</tr>
<tr>
<td>1531.1</td>
<td>900.7</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>7235.1</td>
<td>503.2</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>559.1</td>
<td>8.0</td>
<td>A</td>
<td>0.196409</td>
</tr>
<tr>
<td>8092.1</td>
<td>1295.0</td>
<td>P</td>
<td>0.000072</td>
</tr>
<tr>
<td>7397.1</td>
<td>1021.1</td>
<td>P</td>
<td>0.000072</td>
</tr>
<tr>
<td>8044.1</td>
<td>343.2</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>10279.1</td>
<td>170.0</td>
<td>P</td>
<td>0.000121</td>
</tr>
<tr>
<td>20157.1</td>
<td>702.7</td>
<td>P</td>
<td>0.000044</td>
</tr>
<tr>
<td>4161.1</td>
<td>6.3</td>
<td>A</td>
<td>0.460044</td>
</tr>
<tr>
<td>1509.1</td>
<td>991.7</td>
<td>P</td>
<td>0.000027</td>
</tr>
<tr>
<td>22829.1</td>
<td>2656.3</td>
<td>P</td>
<td>0.000150</td>
</tr>
</tbody>
</table>

Each represents the average Mismatch-corrected intensity of 11 – 20 Probe Pairs!

For all 15 Chips

Proportions are approx. constant for all chips.

Increasing intensity from A to M to P.

Very good variance stabilisation.

Armidale Animal Breeding Summer Course, UNE, Feb. 2006
Use all data and include Flag in the definition Comparison Group

Prop. Total Variance:

~ 3% of Genes being DE in a given contrast:
1. Pregnancy – Lactation
2. Pregnancy – Involution
3. Lactation – Involution

CG: Comparison Group
= Expression Intensities from the same chip (15) and flag (3). Hence, 45 Levels.

Gene by Animal (5) for Biological Variability
Gene by Stage (3)
A final list of 4,003 DE genes (16.6%) was generated after exploring three statistical approaches:

- **GS**: GeneSpring (t-stat)
- **MME**: Mixed-Model Equations
- **BCI**: Bootstrap Confidence Intervals